Loading [MathJax]/jax/output/CommonHTML/jax.js

Diagram Wave Profiles by Stokes Wave Theory

The displayed wave profiles are calculated according to Stokes' fifth order wave theory.
For convenience the formulae are given at the bottom of this page. These formulae are taken from Skjelbreia und Hendrickson (1961).

According to the dispersion relation the wave length is calculated as L=gT22πtanh(2πLd)=gTωtanh(kd).
The remaining specified parameters are as follows: Wave number k=2πL, angular frequency ω=2πT, Ursell parameter UR=HL(Ld)3=HL2d3, acceleration due to gravity g=9.81ms2.

The range of possible inputs is restricted to the left by the limit UR=26 and upwards by the maximum wave steepness in deep water H0L0=17.

Lernplattform des Leichtweiß-Institut für Wasserbau






  •  ___ 1. order share
  •  ___ 2. order share
  •  ___ 3. order share
  •  ___ 4. order share
  •  ___ 5. order share
  •  ___ Stokes 5 wave profile
Display to scale
Display superelevated
−33.5−16.7016.733.5−0.200.2
Wave profileLocation x [m]Water surface elevation η [m]

Stokes' fifth order wave theory according to Skjelbreia und Hendrickson (1961):

kη=kη1(x,t)+kη2(x,t)+kη3(x,t)+kη4(x,t)+kη5(x,t)

=kacos(kxωt)+[(ka)2B22+(ka)4B24]cos[2(kxωt)]+[(ka)3B33+(ka)5B35]cos[3(kxωt)]+(ka)4B44cos[4(kxωt)]+(ka)5B55cos[5(kxωt)]
with:
B22=c(2c2+1)4s3
B24=c(272c8504c6192c4+322c2+21)384s9
B33=3(8c6+1)64s6
B35=88128c14208224c12+70848c10+54000c821816c6+6264c454c28112288s12(6c21)
B44=c(768c10448c848c6+48c4+106c221)384s9(6c21)
B55=192000c16262720c14+83680c12+20160c107280c8+7160c61800c41050c2+22512288s10(6c21)(8c411c2+3)
s=sinh(kd)
c=cosh(kd)
a=H2

The field of Wave Theories is part of the module Basic Coastal Engineering within the specialization Coastal and Ocean Engineering of the master programmes Civil and Environmental Engineering.