====== Diagram Wave Prediction for Deep Water Conditions ====== Shown are the results of the wave prediction procedure for deep water conditions according to //Shore Protection Manual (SPM)// for the set parameters.\\ \\ The dimensionless variables used are therefore calculated as follows: \( \tilde{x} = \frac{g \cdot x}{{U_A}^2} \), \( \tilde{H} = \frac{g \cdot H_s}{{U_A}^2} \), \( \tilde{T_p} = \frac{g \cdot T_p}{U_A} \), \( \tilde{t} = \frac{g \cdot t}{U_A} \), with acceleration due to gravity \( g = 9.81 \frac{m}{s^2} \). \\ \\ For fetch limited sea states: \( \tilde{H} = 1.6 \cdot 10^{-3} \cdot \tilde{x}^{1/2} \), \( \tilde{T_p} = 0.2857 \cdot \tilde{x}^{1/3} \), \( \tilde{t} = 6.88 \cdot 10^{1} \cdot \tilde{x}^{2/3} \).\\ For duration limited sea states, a dimensionless replacement fetch is calculated according to \( \tilde{x} = 1.752 \cdot 10^{-3} \cdot \tilde{t}^{3/2} \).\\ The limit values for fully arisen sea states are \( \tilde{H}_{max} = 0.2433 \), \( \tilde{T_p}_{,max} = 8.134 \), \( \tilde{t}_{max} = 71500 \). Lernplattform des Leichtweiß-Institut für Wasserbau
Seconds Minutes Hours


  
  
  
  

 
 
 

The field of Sea State is part of the module **[[https://www.tu-braunschweig.de/en/lwi/hyku/teaching/master/basic-coastal-engineering|Basic Coastal Engineering]]** within the specialization Coastal and Ocean Engineering of the master programmes Civil and Environmental Engineering.